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Method for detecting the signature of noise-induced structures in spatiotemporal data sets
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Spatiotemporal stochastic resonance~STSR! is a phenomenon, where the stability of spatial patterns in an
extended dynamical system displays a resonance-type dependence on the noise amplitude with the patterns
being optimal at intermediate noise level. This dynamical behavior has been found in theoretical systems as
well as in biochemical processes, where the noise level has been controlled externally. However, it is an open
question how to identify the signature of a spatiotemporal stochastic resonance in a natural system, e.g., in
ecology, when the noise amplitude is not known. This question is addressed in the present paper. We provide
analysis tools, which allow to reconstruct the noise intensity in a spatiotemporal data set from the data alone.
These tools are based on nearest-neighbor considerations inspired by cellular automata and are an appropriate
method for detecting STSR, when combined with some measure of spatial order. As a test of our analysis tools,
we apply them to sample data generated by four theoretical model systems. We show explicitly that without
knowledge of the theoretical value of the noise amplitude for those systems displaying STSR the correspond-
ing resonance curve can be reconstructed from the data alone. In addition, the other~nonresonant! cases are
properly identified by our method with no resonance curve being found.

DOI: 10.1103/PhysRevE.66.026117 PACS number~s!: 05.40.2a, 07.05.Kf, 87.10.1e, 87.18.Hf
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I. INTRODUCTION

The development of new analysis techniques for exp
mental data can be complemented by studying model
tems. This is particularly true for the experimental investig
tion of nonlinear systems. The idea is to generate sam
data using models and then put similar restrictions on th
sample data as in the case of an actual experiment. Exam
for typical restrictions are~1! only one of the dynamica
variable is measured,~2! the sampling rate is reduced, or~3!
the values of internal parameters for different time series
unknown.

With the help of such sample data one can test, how w
the analysis tools are capable of handling real-life data
many cases one can improve the analysis techniques sig
cantly on the basis of such tests.

One of the key features of research in nonlinear dynam
is the correspondence between theoretical mechanisms
dynamical processes observed in nature. A prominent
ample of such a situation is stochastic resonance, where
response of an excitable system to an~e.g., subthreshold!
signal is enhanced at intermediate noise levels~for reviews
see@1–3#!. Similarly to the purely temporal case, where s
nal transduction reacts resonantly to~external or internal!
noise, a spatially extended system can additionally exhibi
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enhancement of spatial coherence, called spatiotemporal
chastic resonance~STSR,@4,5#!.

A typical restriction when dealing with real experiment
data~as opposed to sample data generated with some m
ematical model! is ignorance about certain internal param
eters of the system: it is one of the main difficulties in fin
ing, e.g., stochastic resonance in natural systems that
value of the noise intensity is frequently not known. This
particularly true for spatiotemporal data, which are curren
in the center of interest in biology. Finding such a pheno
enon in a natural system can significantly enhance our
derstanding of the system’s functioning@5–7#. However, in
some cases sophisticated analysis techniques are necess
demonstrate the presence of a certain dynamical phen
enon in an experimental data set~see, e.g., Ref.@8# for ex-
amples in biology!. Spatiotemporal dynamics are particular
difficult to analyze and currently no standardized set of o
servables exists. Frequent methods are Fourier and wa
analysis as well as application of image analysis tools@9#.
However, image analysis usually focuses on some form
pattern recognition, i.e., a form of data analysis aiming a
very specific situation. Some methods from time ser
analysis can be generalized to the spatial or spatiotemp
case. For others some straightforward modifications exis
serve the needs of two-dimensional data analysis~see e.g.,
Refs.@10–12#!. The lack of widely applicable quantificatio
methods for spatiotemporal patterns has resulted in a h
amount of quantification attempts, frequently only used
the analysis of a single experiment~see, e.g., Refs.@10,13–
15#!.

dt,
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The present article attempts to provide the appropr
tools for searching for STSR in experimental data. We
this in three steps:~1! we introduce the tools themselve
~which are spatiotemporal filters based upon near
neighbor interactions!, ~2! we check the performance o
these tools using sample data from model systems, som
which display STSR, some of which do not,~3! we discuss
some aspects important for the actual application of our to
to real experimental data.

Following this line of thought the structure of our paper
as follows: First we formulate the tools, which are dynami
filters based upon cellular automata considerations~Sec. II!.
Next we briefly describe~Sec. IV! the theoretical systems
which we used to generate the sample data. Then, as
step, we apply our tools to these model systems in orde
extract information on a possible resonance behavior w
respect to noise~Sec. V!. The advantage is that without usin
any information on the system other than what would
available as part of an experimental measurement~i.e., in
particular without knowledge of the parameters used to g
erate the data and the value of the noise amplitude! STSR
can by reconstructed. The systematics of these results
discussed in Sec. VI.

II. SPATIOTEMPORAL OBSERVABLES AND CELLULAR
AUTOMATA

The idea behind cellular automata~CA! is to simulate,
which global dynamics of a system result from a cert
local interaction@16,17#. Such an interaction is represente
in terms of update rules for a cell as a function of its neig
borhood. In this general form CA applications may ran
from the approximate solution of partial differential equ
tions to the study of particles, molecules or biological cells
a local potential generated by their immediate neighb
~see, e.g., Ref.@18,19#!. Here our aim is not the study o
temporal dynamics after specification of a set ofupdate
rules, but rather the implementation of localanalysis rules
for a given~experimental or simulated! time development. In
this framework the evaluation of a given neighborhood
time t does not yield the state of this particular cell att
1Dt, but rather gives some characteristic observable for
state of this cell at timet. The state of the automaton is thu
translated into a metastate, which shows the observable
each cell corresponding to the analysis rules. This metas
can then be evaluated in different ways. The simplest wa
arriving at a definite quantitative measure for the data se
the time t is the summation of all cells with respect to th
metastate. Other measures are obtained when the spati
formation is retained or additional restrictions are impos
upon the metastate before summation. In this section,
briefly summarize the general idea of such measures
introduce two explicit observables, namely, the CA homo
neity and the CA fluctuation number, both of which ha
been studied previously in Ref.@20#.

Let I denote a two-dimensional spatial data set, i.e
square matrix of sizeN with componentsai j PS, whereS is
the set of possible states. Note that the restriction to a sq
matrix only refers to the notation used in the text. The o
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servables defined here are applicable to any type of matri
A time sequence of such matrices or ‘‘images’’ is a set

$I~ t !; t51,2, . . . ,NT%, ~1!

where nowt denotes some normalized~dimensionless! time
and NT is the number of images in the sequence. The~von
Neumann! neighborhoodNi j of an elementai j consists of
the element’s four nearest neighbors~i.e., for sake of nota-
tional convenience in our definition we exclude the cent
elementai j from the neighborhood!.

The first observable to be discussed here is the CA ho
geneity. The corresponding analysis rule is given by the m
ping

ai j →
1

uNi j u
(

bPNi j

Q~ai j ,b!, ~2!

whereuNi j u denotes the number of nearest neighborsb of the
cell ai j and the functionQ has to be specified in accordanc
with the state spaceS as

Q~a,b!512
~a2b!2

uSu2
, ~3!

where uSu is the maximum distance in the state spaceS
between two states of cells. In the case of a state space w
out a distance~e.g., the Ising model, see@20# for details of
this analysis! Q reduces to ad function, giving 1 for identity
and 0 else,

Q~a,b!5H 1, a5b

0, aÞb.
~4!

We found that the specific form ofQ is not decisive as long
asQ is confined to the interval@0,1# and increases monoto
nously. Application of Eq.~2! with Q as in Eq.~3! leads to
the metastate of the imageI. Normalized summation over al
elements in the metastate then gives the CA homogeneitH,

H@I#5
1

N2 (
i j

1

uNi j u
(

bPNi j

Q~ai j ,b!. ~5!

Here and below all normalization coefficients are writt
immediately before the corresponding summation. Note t
the neighborhoodNi j of cells at the boundaries has to b
modified according to the boundary conditions. In a syste
where the average value over all cells changes significa
with time, an appropriate measure of spatial order is the
ference between the actual homogeneityH@I# and a state
homogeneityHS@I# given by

HS@I#5 (
a,bPS

Q~a,b!papb , ~6!

with the probabilitypx of the statexPS and the functionQ
from Eq. ~4!. Equation ~6! is the expectation value o
Q(a,b) over the whole spatial lattice. One can think of th
quantityHS as the average homogeneity obtained by resh
7-2
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fling all cells and, thus, destroying spatial order. In the f
lowing, the resultingreduced homogeneity

h@I#5H@I#2HS@I# ~7!

is used, rather than the homogeneityH@I# itself. It is shown
below that for the choice ofQ as in Eq.~3! this difference
h@I# is proportional to the covariance of a matrixI. Even for
small spatiotemporal data sets this method of calculatin
quantity describing the spatial correlation is fast and reliab

H@I#, HS@I#, andh@I# of Eqs.~5!, ~6!, and~7!, respec-
tively, can be related to commonly used statistical propert
Defining the varianceV of an imageI as

V@I#5
1

N2 (
i j

~ai j 2ā!25ā22ā2, ~8!

where

ā5
1

N2 (
i j

ai j , ā25
1

N2 (
i j

ai j
2 , ~9!

and the purely spatial autocovariancex1 of nearest neighbors
for the imageI as

x1@I#5
1

N2 (
i j

1

uNi j u
(

bPNi j

~ai j 2ā!~b2ā!

5
1

N2 (
i j

1

uNi j u
(

bPNi j

~ai j b2ā2!, ~10!

one finds forH

H@I#5
1

N2 (
i j

1

uNi j u
(

bPNi j
S 12

~ai j 2b!2

uSu2
D ,

512
2

uSu2 S V2
1

N2 (
i j

1

uNi j u
(

bPNi j

~ai j b2ā2!D ,

and, therefore,

H@I#5122
V@I#2C1@I#

uSu2
, ~11!

where the autocorrelation coefficientC1 is defined as

C15
x1@I#

V@I#
. ~12!

This demonstrates that the CA homogeneityH is a universal
measure abstracting from the specific properties of the a
lyzed system. The state homogeneityHS from Eq.~6! can be
written as

HS@I#5
1

N4 (
i j

(
kl

S 12
~ai j 2akl!

2

uSu2 D 512
2V@I#

uSu2
.

~13!
02611
-

a
.

s.

a-

So the reduced homogeneityh@I#,

h@I#5H@I#2HS@I#52
C1@I#

uSu2
, ~14!

is proportional to the autocovariance of the imageI and
gives the complete spatial information about neighbor s
within I. Note that this relation is only valid for the particu
lar form of Q from Eq. ~3!.

Noise and fluctuations can be thought of as the contri
tion of processes with small time constants in the obser
dynamics@21#. This prerequisite in mind, we assume that t
fluctuations under consideration enter the model system
white or nearlyd-correlated noises.

The key idea here for quantification of such contributio
is to use the relative movement of neighbors of a particu
cell ai j

(t) at a timet, i.e., changes of the quantitiesd i j
(t,k) in

d i j
(t)5$ai j

(t)2b(t); b(t)PNi j %5$d i j
(t,1) , . . . ,d i j

(t,uNi j u)%,

as a means of separating directed and undirected~eventually
stochastic! change of the state of a cell. If the discretizatio
of the spatiotemporal data set in space~due to the finite cell
size! and time~due to the finite number of images! is small
enough, directed and stochastic changes will have very
ferent scales in time and space.

For means of separation, one has to assume that the s
for the stochastic part will be smaller than the scales pres
in the discretization of the data set and the time scales
deterministic dynamics themselves~cf. the Appendix!.

This leads to a~sufficient! condition for a manifestation o
noise in a specific change atai j

(t) ,

Sig@d i j
(t,k)2d i j

(t21,k)#ÞSig@d i j
(t11,k)2d i j

(t,k)#

`d i j
(t,k)2d i j

(t21,k)Þ0 `d i j
(t11,k)2d i j

(t,k)Þ0, ~15!

where the last two inequalities are subsidiary conditions
troduced for convenience and the sign function

Sig@x#5H 11, x.0

0, x50

21, x,0

has been used. Each transitiond i j
(t21,k)→d i j

(t,k)→d i j
(t11,k) ful-

filling the condition~15! gives a contribution

1

2
~ ud i j

(t,k)2d i j
(t21,k)u1ud i j

(t11,k)2d i j
(t,k)u!. ~16!

Averaging with respect tok,i , andj leads to the final expres
sion for the CA fluctuation numberV(t),
7-3
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V~ t !5
1

N2 (
i j

1

uNi j u
(
k51

uNi j u 1

2
~ ud i j

(t,k)2d i j
(t21,k)u

1ud i j
(t11,k)2d i j

(t,k)u!
1

2
Sig@d i j

(t,k)2d i j
(t21,k)#

3Sig@d i j
(t11,k)2d i j

(t,k)#~Sig@d i j
(t,k)2d i j

(t21,k)#

3Sig@d i j
(t11,k)2d i j

(t,k)#21!, ~17!

where the term in the second row is either 0 or 1 filtering
dynamics according to the fluctuation condition~15!. In the
following, we will show that the quantityV in combination
with the reduced homogeneityh or with the ~nearest-
neighbor! correlation coefficient of the imageI is capable of
distingushing between STSR and a nonresonant beha
with respect to noise.

III. APPLICATION TO EXPERIMENTAL DATA

A well-designed experiment for spatiotemporal dynam
will yield data with a higher spatial~and temporal! resolution
than required by the dynamics of the system.

This, however, means that one does not automatically
ply these tools to the appropriate length scale. Tha CA
mogeneity, for example, when naively applied to a time
ries of high-resolution spatial images will be dominated
measurement noise, rather than quantifying the patterns
ing on the level of the system’s dynamics. In such cases
necessary to study thescale dependenceof the observables

In the case of experimental data analyzing this scale
pendence is straightforward: one has to substitute block
s3s pixels, each containing the numerical measurem
value, by their average value. Such abinningyields a spatial
image with a lower resolution for which, e.g., the CA hom
geneityH can be calculated. Averaging over time and va
ing s one obtainsH as a function of the scales.

On the other hand, a lot can be learned about the len
scales present in the experimental data, when one, in p
ciple, knows what behavior of the observables one can
pect. Then the scale dependence of these observables
help to extract characteristic scales of different contributio
to the dynamics, even if some of them are masked by m
surement noise or more than one length scale is prese
the system. A detailed analysis of the scale-dependence
‘‘data’’ generated by theoretical model systems has been
formed in @22#.

In addition to binning, some application of nois
reduction techniques may be an appropriate preparatio
the experimental data before studying them with the to
described in the preceding section.

The CA homogeneity can often be substituted by stand
tools for the quantification of clustering phenomena. In
following we will show this explicitly for the spatial corre
lation coefficient. In Ref.@20# the CA homogeneity has als
been compared with cluster quantification algorithms.

In practice any application of these spatiotemporal filt
can be~and often has to be! complemented by further dat
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analysis techniques, such as stationary tests and met
based on surrogate data.

IV. THEORETICAL MODELS USED TO GENERATE
SAMPLE DATA

In this section, we apply the observables defined abov
four different theoretical model systems, each of which i
network of coupled nonlinear oscillators. The individu
units are FitzHugh-Nagumo oscillators, Sel’kov oscillato
Braaksma-Grassman oscillators, and a threshold device l
ing to a CA-type excitable medium introduced in Ref.@4#
and further studied in Ref.@23#. While the first two systems
are well known, the latter two require some comment. T
Braaksma-Grassman system~see, e.g.,@24,25#! is an exter-
nally driven network of excitable oscillators in which sto
chastic resonance has recently been found@25#. The system
from Ref. @4#, which in the following we will refer to as the
Jung system, is an excitable media cellular automaton wi
threshold and an exponentially decaying coupling betw
elements. The explicit forms of the model systems are
follows.

~1! FitzHugh-Nagumo~FHN!: The model is given by
~see, e.g., Ref.@26#!

u̇i j 5@~a2ui j !~ui j 21!ui j 2v i j #
1

e
1j i j ~ t !1DDui j ,

v̇ i j 5bui j 2gv i j 2c ~18!

with parameters (a,b,c,g,e,D)5(0.15,0.0024,0.0,0.003
1.0,0.05) in the excitatory regime and the diffusion term

Dui j 5 (
klPNi j

~ukl2ui j !. ~19!

The neighborhoodNi j consists of the four nearest neighbo
of the element (i j ). For the discussion of the oscillator
regime we use the following parameter value
(a,b,c,g,e,D)5(0.5,1.0,0.3,0.5,0.01,0.1).

~2! Sel’kov ~oscillatory!: We use the following form of
the Sel’kov system@27#:

u̇i j 52ui j 1lv i j 1v i j ui j
2 ,

v̇ i j 5b2lv i j 2v i j ui j
2 1j i j ~ t !1DDv i j ~20!

with parameters (b,l,D)5(0.66,0.114,0.16) and a couplin
term Dv i j corresponding to the one given in Eq.~19!.

~3! Braaksma-Grassman~BG! ~excitatory!: The BG sys-
tem is given by

eu̇i j 5v i j 2
1

2
ui j

2 2
1

3
ui j

3 ,

v̇ i j 5a2ui j 1j i j ~ t !2Dui j ~21!

with parameters (a,e,D)5(0.1,0.01,0.15) and a couplin
term as in Eq.~19!. The system is driven by an external forc
7-4
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A cos(vt) with A51 andv518 @ time units (t.u.)#21 acting
additively upon thev i j with i 51,1< j <32.

Due to the negative sign of the coupling constantD in Eq.
~21!, coupled neighbors are driven in opposite directions.
optimal coupling and noise the oscillators drive each ot
into the stationary or excited state in a temporally and s
tially alternating fashion. Because Eq.~21! has no back cou-
pling, excitations can propagate only in one direction. Hen
in the resonant state plane waves propagate according t
unidirectional coupling across the system, while dire
neighbors oscillate in an antiphase manner and every se
element pulses in phase. This results in a checkerboard
pattern@cf. Fig. 2~a!, system 2#. Decreasing or increasing th
noise level destroys simple geometrical patterns as the
tem becomes less excited@Fig. 2~a!, system 1 and 3# or noise
dominated~system 4!, respectively.

~4! Jung CA: The Jung CA has been implemented as
scribed in Ref.@4#. We investigate a 1003100 grid of pulse-
coupled threshold devices, whose time evolution is given

ui j ~ t1Dt !5~12g!ui j ~ t !1j i j ~ t !1Di j ~22!

with spatially incoherent Gaussian noisej i j and a dissipation
parameterg50.5. A network element fires when it crosses
threshold value of 1.0, after which it enters a refractory
riod of nine time steps, during which it cannot be excit
again. The couplingDi j regulates the contribution toxi j from
input of all other elements in the network that fire at timet
2Dt.

Di j 5K(
kl

expS 2l
r i j ,kl

2

a2 D , ~23!

wherer i j ,kl
2 is the squared Euclidian distance between co

municating elements normalized to the grid spacinga51.1.
The spatial decay of the coupling is given byl50.1 The
quantityK50.176 is the coupling strength.

Networks of 32332 oscillators with randomized initia
conditions have been simulated. Only for the Jung syste
network of 1003100 elements is discussed. We applied op
boundary conditions for the excitatory FHN system, the B
system and the Jung system, while for the Sel’kov and
oscillatory FHN systems periodic boundary conditions ha
been used.

In all cases the numerical simulations have been car
out using exponentially correlated, colored noise, which p
vides a more realistic description of real fluctuations in b
logical systems, as compared to spectrally flat noise. I
generated by an Ornstein-Uhlenbeck process~see Ref.@25#
and references given there!. The noise intensitys2 is defined
via the standard deviation of the Gaussian-distributed n
amplitudes,

^j~ t !&50, ~24!

^j~ t !j~ t8!&5
s2

tc
expS 2

ut2t8u
tc

D , ~25!
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wheretc is the noise correlation time. The noise termj i j (t)
is uncorrelated from site to site, i.e., spatially incohere
Equations~18–21! were numerically integrated using a Heu
algorithm@28# with a stepsizeDt51023 t.u. The noise cor-
relation time has been chosen to betc51023 t.u.

Throughout this paper, the model parameters are h
constant, except for the noise intensitys2. We checked,
however, that the forms of dynamics discussed here pe
over a wide range of the model parameters.

V. RESULTS

Even with the eye one sees significant differences
tween the snapshots at different noise intensities for eac
the four systems shown in Figs. 1 and 2. A quantitat
analysis, however, is not straightforward, in particular, wh
the noise intensity itself is not given as an additional info
mation.

Note that here and in the following we use only one of t
dynamical variables to quantify spatial organization. This
closer to the case of real experimental data, as in most c
only one of the system’s dynamical variables is observed.
used the variableu for all systems studied here. For the fir
two cases~excitatory and oscillatory FHN! we will give four
diagrams, namely, the reduced homogeneityh(s2), the CA
fluctuation numberV(s2), a correlation diagram with pairs
(h,V), and a correlation diagram with pairs (C1 ,V), where
C1 is the spatial nearest-neighbor correlation coefficient~i.e.
the usual autocorrelation coefficient! of the imageI. For the
other systems only the correlation diagram of pairs (h,V), is
given, as in these cases the quantityC1 showed the same
qualitative behavior ash and, thus, did not provide any ad

FIG. 1. Snapshots of the typical dynamical behavior of two
the model systems. The state of one dynamical variable~as de-
scribed in the text! is shown for four different noise intensitiess2.
~a!: FHN system in its excitatory regime~the values ofs2 are
1:931025, 2:331024, 3:131023, 4:831023), ~b!: FHN in the
oscillatory regime (1:231024,2:231023,3:231022,4:1
31021), ~c!: Sel’kov system (1:131023,2:2.431022,3:0.05,
4:0.25). In all cases an array of 32332 oscillators has been used
The parameter values are given in Sec. IV.
7-5
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ditional information. In all cases averages over many ti
steps have been taken~see figure captions for details! and a
transient at the beginning of each time series has b
skipped.

Figure 3~a! shows the reduced homogeneityh5H2HS as
a function of the noise intensitys2 for the FHN system in
the excitatory regime. A resonance-type behavior is s
with a maximum arounds2'0.0006. An important interme
diate step in our attempt to recover the stochastic reson
from the ‘‘data’’ set alone is given in Fig. 3~b!, where the CA
fluctuation numberV is shown as a function ofs2. Due to
the monotonous, over a wide range ofs2 almost linear,
shape of the curve,V is able to quantify the inherent nois

FIG. 2. Snapshots of the typical dynamical behavior of the
maining two model systems. As in Fig. 2 the state of one dynam
variable is shown for four different noise intensities.~a!: BG system
~the values ofs2 are 1:131025, 2:131024, 3:831024, 4:5
31023), ~b!: Jung system(1:0.07,2:0.10,3:0.15,4:0.35). Again
the parameter values are given in Sec. IV.
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intensity. Thus, we are now able to obtain the resona
curve solely from information present in the data sets the
selves. This is shown in Fig. 3~c!, which is a scatter plot~or
correlation diagram! of the pairs (h,V). At this stage of the
analysis process information on the theoretical noise int
sity s2 is no longer necessary. In this manner our analy
technique could also be applied to real~i.e., not artificial!
data, e.g., when dealing with ecosystem dynamics or in v
systems, where no direct information of the noise intensity
available. The second correlation diagram, Fig. 3~d!, display-
ing the correlation coefficientC1 together with the CA fluc-
tuation numberV confirms this picture. Here the resonan
is even more clearly visible.

The response of the system to noise changes visibly, w
one passes to the oscillatory regime of the FHN system. F
ure 4 shows the corresponding results of our analysis. F
the snapshots in Fig. 1~b! it can be seen that one no long
finds stable patterns at intermediate noise intensities. H
ever, the average size of clusters still seems to depend on
noise intensity in a nonmonotonous way. This impression
captured by the reduced homogeneity@Fig. 4~a!#, where a
peak inh(s2) is seen arounds2'0.01. In this case, thes2

dependence of the correlation coefficientC1 deviates from
that observed for the functionh(s2), as forC1 no resonant
behavior is found@cf. Fig. 4~d!#. The effect is much less
dramatic, however, than in the excitatory case, where
resonance was also observed in the noise dependence o
correlation coefficient, Fig. 3~d!. Nevertheless, on the bas
of Fig. 4~a!, which corresponds to what is seen in the sna
shots from Fig. 1~b!, we find that a measure of spatial ord
shows a resonance-type dependence on the noise inte

-
al
FIG. 3. The dependence of the reduced homogeneityh5H2HS @cf. Eq. ~7!# on the noise amplitudes2 for a lattice of FHN oscillators
in the excitatory regime~a!. For the computation ofh an average over 3500 time series samples with a sampling rate of 10 t.u.21 has been
taken. For parameter values see the discussion in Sec. IV. Panel~b! shows the dependence of the CA fluctuation numberV @cf. Eq. ~17!# on
the noise intensitys2. In panel~c! the correlation diagram ofh and V. The shape of the curve in panel~a! is retained. The numbers in
brackets shown in the panel~a! indicate the noise intensities at which the snapshots in Fig. 1 have been taken. Panel~d! gives the correlation
diagram of the correlation coefficientC1 and the CA fluctuation numberV.
7-6
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FIG. 4. Same as Fig. 3, but fo
the FHN system in the oscillatory
regime. The average has bee
taken over 500 samples with
sampling rate of 5 t.u.21. Both,
panel~a!, which contains the the-
oretical noise intensity, as well a
panel ~c!, where the noise inten-
sity reconstructed with the fluc
tuation number has been use
show some evidence of STSR. I
the correlation diagram~d! of
pairs (C1 ,V) no resonant behav
ior is seen.
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This can also be seen as a special case of STSR. As be
the functionV(s2) shows a monotonous behavior, but t
two distinct regimes discernable in Fig. 4~b! lead to a shift of
the peak in the correlation diagram, Fig. 4~c!. The correlation
coefficientC1 remains almost constant over a wide range
s2 and then sharply decreases at highs2 @cf. the correlation
diagram shown in Fig. 4~d!#. Thus, even without knowledg
of the noise intensity, we can reproduce the evidence for
form of STSR found in Fig. 4~a!.

The results for the Sel’kov system are shown in Fig. 5.
the correlation coefficientC1 and the reduced homogeneityh
display qualitatively the same dependence ons2 we only
show the corresponding results forh. In accordance with
what is expected from the snapshots shown in Fig. 1~c!, we
find no STSR for the~oscillatory! Sel’kov system. The re-
duced homogeneityh changes sign with increasings2, but
no resonance is found. Again, the almost linear relation
tweenV and s2 seen in Fig. 5~b! allows us to rely on the
data alone for reproducing the noise dependence of the
duced homogeneity in terms of a correlation diagram sh
ing pairs (h,V) @Fig. 5~c!#.

In Ref. @25# Busch and Kaiser have quantified the ph
nomenon of STSR for the BG system by studying the av
age number of oscillators within each column of the ar
that are spiking within a short time interval as a function
the noise amplitudes. The resulting observable is optima
for this particular type of oscillation patterns, but is difficu
to transfer to other dynamical systems. Here we use the
duced homogeneity as an alternative. As is seen in Fig. 6
is sufficient to obtain a similar resonance-type structure a
the case of the quantity used in@25#. Due to the anticorrela-
tion of neighboring oscillators@cf. the snapshots shown i
Fig. 2~a!# the reduced homogeneityh, being based on
nearest-neighbor considerations, decreases with more
more ordered plane waves running through the latt
Hence,h as a function of the theoretical noise intensitys2

shows a minimum in Fig. 6~a! arounds2'0.009. At that
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point the average number of oscillators spiking synch
nously within each column has a maximum~cf. @25#!.

Already from the snapshots@Fig. 2~c!# for the Jung sys-
tem one can appreciate the fact that noise intensity regul
the structural stability of the spiral waves appearing in t
excitable medium. The reduced homogeneityh5h(s2) has a
sudden increase at abouts2'0.09 and shows a maximum
arounds2'0.11 followed by a slow descent at highers2

@cf. Fig. 7~a!#. Although the CA fluctuation numberV also
shows a pronounced jump ats2'0.09, it nevertheless is a
monotonous function ofs2 @cf. Fig. 7~b!#. Consequently, the
resulting correlation diagram, Fig. 7~c! correctly identifies
the system’s behavior as STSR.

VI. DISCUSSION

We introduced a method for quantifying spatiotempo
dynamics in spatially and temporally discrete systems un
the influence of noise. The capabilities of the method
illustrated here by applying it to a data set with a know
mechanism of generation and, thereby, detecting spatiot
poral stochastic resonance displayed by some of the m
systems.

With the help of this method, we found STSR in the e
citatory FHN system, in the BG system and in the Jung s
tem. Some evidence for STSR has been found in the os
latory FHN system. The Sel’kov system showed no reson
behavior with respect to noise intensity. All these resu
could be reproduced without knowledge of the noise int
sity by studying correlation diagrams of some spatial obse
able ~in our cases the reduced homogeneity or the spa
correlation coefficient! with the CA fluctuation number intro-
duced in Sec. II.

It is clear, however, that a lot of detailed studies are n
essary in order to see, how this method deals with situatio
which are not as standard as the system investigated h
The crucial ingredient is the monotonous behavior of the
fluctuation numberV as a function ofs2. We have tested the
7-7
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M.-TH. HÜTT, R. NEFF, H. BUSCH, AND F. KAISER PHYSICAL REVIEW E66, 026117 ~2002!
fluctuation numberV quantifying successfully the noise in
tensity in several theoretical systems. A universal formu
tion of the conditions under whichV is a monotonous func
tion of the ~internal! noise level of the system has not y
been achieved.

A major difference between real spatiotemporal data s
and the examples given here is the existence of a cano
length and time scale in the image sequences of the m
systems. The spatial and temporal resolution of the exp
mental data usually is much higher than the typical len
and time scales present in the system and, therefore, nea
neighbor considerations might be difficult to apply. In pra
tice, it may thus become necessary to scale the spatial
points, as described in Sec. III, before using the definitio
given in the present paper. Currently we are applying

FIG. 5. Same as Figs. 3~a!–3~c!, but for the Sel’kov system. The
average has been taken over 500 samples with a sampling ra
10 t.u.21. Now only one correlation diagram is shown, namely
pairs (h,V). No evidence for STSR is found.
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methods to a variety of experimental data, e.g., to the an
sis of vegetation patterns in extended ecological systems
to chlorophyll fluorescence images of plant leaves~see Ref.
@29# for examples of the experimental data for the lat
case!.

The rationale behind these applications is that whene
an observable quantifying spatial structure displays a re
nance in the correlation diagram with the CA fluctuati
number, this can be regarded as evidence for STSR.

Several important questions have not been addressed
It would, for example, be useful to have some means
deciding, whether a given data set fulfills the conditions
application of our method, particularly the scale of discre
zation in space and time. In practice, however, one often

of

FIG. 6. Same as Fig. 5, but for the system of BG oscillato
with the time average taken over 500 samples with a sampling
of 10 t.u.21. A minimum occurs arounds50.008. The system’s
most ordered state is perfectly anticorrelated~cf. the snapshots in
Fig. 2 and the discussion in Sec. IV!. Thus, the signature of STSR
in this case is a minimum ofh(s).
7-8
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METHOD FOR DETECTING THE SIGNATURE OF . . . PHYSICAL REVIEW E 66, 026117 ~2002!
additional information about the system~e.g., about typical
length scales or time constants!, which can be used to clarify
this point. In any case, it is useful to study the stability of t
results under variation of the discretization scale in space
time. This can be done both experimentally~by changing, if
possible, the resolution of the experimental setup! or theo-
retically ~by introducing some binning before extracting t
observables!.

As pointed out, a second question not discussed in de
here concerns the conditions for the monotonous relation
tween noise intensitys and CA fluctuation numberV as
mentioned above. The analytical material of the appen
may help to gain access to this property ofV, without, how-
ever, solving the full mathematical problem. Clearly, a rig

FIG. 7. Same as Fig. 5, but for the Jung system, now with
average over 260 samples, sampling at every other time step.
maximum inh is the signature of STSR.
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ous result would facilitate application to real experimen
data.

The development of methods for extracting characteri
and useful information on spatiotemporal phenomena fr
experimental data is still at its beginning. The principal a
is to formulate standardized analysis methods, which
tested and gauged by applying them to theoretical syst
and by examining the correlation with existing observabl
With the present paper, we have tried to provide some id
in this direction.
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APPENDIX

An analytical interpretation of the CA fluctuation numb
V ~Eq. 17! can be obtained in the following way: The con
tribution ~16! of each pair of neighbors under the conditio
~15! leads to

~ ud i j
(t11,k)2d i j

(t,k)u1ud i j
(t,k)2d i j

(t21,k)u!2

5@d i j
(t11,k)2d i j

(t,k)2~d i j
(t,k)2d i j

(t21,k)!#2

5~d i j
(t11,k)22d i j

(t,k)1d i j
(t21,k)!2. ~A1!

This corresponds to the~square of the! discretized second
time derivative ofd i j

(t,k) at time t. Thus, each pair of neigh
bors contributes the ‘‘curvature’’ ofd i j

(t,k) to the CA fluctua-
tion numberV.

In order to exploit this relation further, we assume that t
system under consideration obeys a one-dimensional fi
order differential equation at each lattice point. The who
lattice at discrete time steps leads to the ‘‘images’’I(t). The
system, thus represented as a coupled-map lattice then
the following form:

ẋi j ~ t !5 f @xi j ~ t !#1j i j ~ t !1D (
bPNi j

@b~ t !2xi j ~ t !#,

i , j 51 . . .N, ~A2!

wheref in general is a nonlinear function,j i j (t) is a spatially
and temporally incoherent noise andD is the diffusion con-
stant. This equation is solved by

xi j ~ t !5E
0

t

ẋi j ~ t8!dt82xi j ~0!. ~A3!

The contribution, Eq.~A1!, to the fluctuation number in this
formulation is (t61→t6Dt),

n
he
7-9
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@$xi j ~ t1Dt !2xi j
(k)~ t1Dt !%22$xi j ~ t !2xi j

(k)~ t !%1$xi j ~ t2Dt !2xi j
(k)~ t2Dt !%#2

5F S Et

t1Dt

2E
t2Dt

t D H f @xi j ~ t8!#1D (
bPNi j

@b~ t8!2xi j ~ t8!#2 f @xi j
(k)~ t8!#2D (

cPN i j
(k)

@c~ t8!2xi j
(k)~ t8!#J dt8

1E
t

t1Dt

$j i j ~ t8!2j i j
(k)~ t8!%dt82E

t2Dt

t

$j i j ~ t8!2j i j
(k)~ t8!%dt8G 2

5F S E
t

t1Dt

2E
t2Dt

t D g~ t8!dt81S E
t

t1Dt

2E
t2Dt

t D $j i j ~ t8!2j i j
(k)~ t8!%dt8G2

5@Dt•@g~ t2!2g~ t1!#1h i j
(k)~ t,Dt !#2, ~A4!
ic
w

s

s,

ure
ant

ter-
y

whereg(t) andh i j
(k)(t,Dt) are summing up the determinist

and stochastic part, repectively. The mean value theorem
used, which implies continuity ofg(t) (t1P@ t2Dt,t#,t2
P@ t,t1Dt#). With a small Dt in comparison to the time
scale of the variation ofg(t), the deterministic part vanishe
and the stochastic one remains to be registered byV(t).
Assuming further a Gaussian white noisej i j (t) with

^j i j ~ t !&50,

^j i j ~ t !jkl~ t8!&5d ikd j l d~ t2t8!s2 ~A5!

gives forh i j
(k)(t,Dt),

^h i j
(k)~ t,Dt !&50,

^h i j
(k)~ t,Dt !hmn

( l ) ~ t,Dt !&5d imd jndkld~ t2t8!4s2Dt.
~A6!
v.

e,

K

ett

r
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Neglecting the filter term in Eq.~15! results in the approxi-
mation,

V~ t !'
1

N2 (
i j

1

uNi j u
(
k51

uNi j u

@h i j
(k)~ t,Dt !#2'4s2Dt, ~A7!

where a largeN is sufficient for the second equality. Thu
the CA fluctuation numberV(t) is proportional to the vari-
ance of the initial noise and, therefore, an excellent meas
of the noise content of the observed dynamics. An import
necessity for the first approximation in Eq.~A7! is a gap
between the time scales of the initial noise and of the de
ministic part placingDt in between to account for the nois
contribution.
.
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@8# M.-Th. Hütt, Datenanalyse in der Biologie~Springer, Heidel-

berg, 2001!.
@9# B. Jähne,Practical Handbook on Digital Image Processing fo

Scientific Applications~CRC-Press, Boca Raton, 1997!.
@10# G.K. Harkness, J. Lega, and G.-L. Oppo, Physica D96, 26

~1996!.
@11# H. Herzel, Curr. Top. Acoust. Res.2, 17 ~1998!.
@12# S. Ninagawa, M. Yoneda, and S. Hirose, Physica D118, 49

~1998!.
.

.

@13# H.G. Jones, Plant Cell Envir.22, 1043~1999!.
@14# T. Lawson and J. Weyers, J. Exp. Bot.50, 1381~1999!.
@15# Measures of Spatio-Temporal Dynamics, edited by A.M. Al-

bano, P.E. Rapp, N.B. Abraham, and A. Passamante~Elsevier
Science B.V., Amsterdam, 1996!.

@16# S. Wolfram, Nature~London! 311, 419 ~1984!.
@17# Y. Bar-Yam,Dynamics of Complex Systems~Addison-Wesley,

Reading, MA, 1997!.
@18# G.B. Ermentrout and L. Edelstein-Keshet, J. Theor. Biol.160,

97 ~1993!.
@19# M. Markus, A. Czajka, D. Bo¨hm, T. Hahn, T. Schulte, and A

Ribeiro, inCellular Automata and Complex Systems, edited by
E. Goles and S. Martinez~Kluwer Academic Publishers, Dor
drecht, 1999!.
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